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Abstract

The authors give error estimates, a Voronovskaya-type relation, strong converse results and
saturation for the weighted approximation of functions on the real line with Freud weights by
Bernstein-type operators.
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1. Introduction

In Chlodovsky [1] introduced some Bernstein-type polynomial operators to
approximate unbounded functions on the real line, but he gave only pointwise
convergence results without error estimates. For practical purposes discrete linear
operators are more useful than continuous operators (like convolution integrals,
etc.). However, the divergence behaviour of weighted Lagrange interpolation with
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Freud weights for continuous functions on the real line is well-known (see [8]). Also
Hermite—Fejér interpolation does not solve the weighted approximation problem on
the real line, because the weight in the corresponding error estimate is different from
the weight in the definition of the function class (see [8,9]).

Recently the authors in [2] introduced some Bernstein-type operators for the
weighted approximation of functions on [—1, 1] with endpoint or inner singularities
and they showed direct and converse results. In this respect, we mention the recent
paper [5] where weighted approximation by Bernstein polynomials on [—1,1] is
considered. However, in [5] only continuous functions are examined (without
singularities), and thus the use of weights is not properly justified.

In this paper, we construct a Bernstein-type operator for the weighted
approximation of functions on (— oo, +o00) with respect to Freud weights and give
error estimates, a Voronovskaya-type relation, strong converse results and solve the
saturation problem (see Theorems 1-5).

2. Main results

In the following ¢ denotes a positive constant which may assume different values
in different formulas. Moreover, let v~ u, for v and u two quantities depending on

some parameters, if |v/ ,u|i1 <, with ¢ independent of the parameters.
Let

w(x) =e 2™ xe(—o0,+w)
be a Freud weight, with Q(x) satisfying the following conditions:

(a) QeC*(0,+ ) is a positive even function,

(b) limy_, o x% =9>0,

(¢) if y =1 or 3, then Q" is nondecreasing

(see [4, Definition 11.3.1, p. 184]). Evidently, condition (b) implies that for sufficiently
large x both Q'(x) and Q"(x) are positive, and Q’(x) tends to infinity as x does.
Now consider the class of functions

Co={/eCR): lim (nf)(x) =0}

equipped with the norm [|wfl[¢, = |[wf]| = sup, |(w/(x)|. We also put ||w/]|., =
max.<y<q |(Wf )(x)|. For f € C, the weighted modulus of smoothness is

30 = sup WALl g+ jnf (W(F = Ol

0<h<t

b (= Ol oo (1)

where ¢* is defined by tQ'(¢*) = 1 (see [4, Definition 11.2.2, p. 182]) and 2, ne N is
the set of algebraic polynomials of degree at most n.
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Next, we define a sequence of positive real numbers {1,} by
;th/(/ln) = \/ﬁa n>no (2)

with ny sufficiently large. For n<ny, let 4, = 4,,; with this extension of the definition,
the entire sequence {/,},” will be monotone increasing.

Note that these numbers are in close relation with the so-called Mhaskar—
Rahmanov—Saff numbers a, with respect to the weight w which play a crucial
role in the infinite—finite range inequalities for polynomials. In fact, it is easy to see
that

;Ln"/a\/ﬁ

(cf. e.g. [6, (5.3) and (5.9)]).
For every feC, let

B/ =3 puk () (0) @)
k=0

with

1 /n x\* x \"* 2k —n
=5 (1)(1+5) (-3) - womemn® @

and finally our Bernstein-type operator is
B,(f,x) if x| </,
B,(f,x) =< Bu(f,2n) + B, ([ 7n)(x — 4n) if x> 2, (5)
Bu(f,—on) + B.(f, =) (x + Ay) if X< — .

Remark. Note that B;/ € ACj, and B is a linear operator, which reproduces linear
functions 7, i.e., B}(/,x) = /(x). We could not consider only B, because its weighted
norm is not bounded.

We have the following error estimate.
Theorem 1. If f€C,, then

Iwer = By Mli<eon( 1.52) ©)

We remark that (2) implies 4, = o(y/n), i.e. estimate (6) yields convergence.
Next, we state an asymptotic relation of Voronovskaya-type for the operator B;.

Theorem 2. Assume f € C,, such that " (x) exists at a fixed point x. Then

lim 2/ (x) — Bi(f,x)] = —2f"(x). (7)

n—ow /)
‘n
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Remark. Comparing this with the Voronovskaya relation for the classical Bernstein
operator on [0, 1], we see that the factor 1 — x? on the right-hand side in (7) is missing
here, as expected.

We also state a strong converse result.

Theorem 3. We have

Ilw[f—B:xfm:o(

I \”
n) < w(f,t),<ct”, O<a<2.

NG
The following result yields the trivial class of saturation.

Theorem 4. We have

2

wlf - B/l = (*—) o fis linear.

n

Finally we settle the problem of saturation class.

Theorem 5. We have

2

s — Bl = o(’—) o olf,1), <ct

n

3. Proof of Theorem 1

The proof of Theorem 1 is based on several lemmas. First we state a property of
Freud weights which is folklore, but for completeness we include a proof.

Lemma 1. For Freud weights w(x) = e~ 2%) we have
Q'(ax)<AQ'(x), a=1, x=x, (8)
where the constant A>1 depends only on a.

1
Proof. Let first a = qy = €20+, Then by Q”(x)>0 for x>x, and property (b) of
Freud weights we get
apx apx /
O -0w= [ owaso+n [T Ela

X t

1
< (y+1)Q'(apx)logag = 5 Q'(apx), x=xo,
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whence
Q' (apx) <20 (x), x=x¢ 9)

which proves the lemma for a = ay.
Now let a>1 be arbitrary, ak~! <a<af, say. Then using (9) repeatedly we obtain

Q' (ax) < Q' (afx) <20/ (g 'x) <20/ (af 2x)

< - Ssz/(x)<22(y—0—1)10ga+lQ/(x)7 x> Xo. 0

The boundedness of the weighted norm of our operator will be proved separately
for the interval

L, = [, A

and for its complement. In fact, the weighted boundedness of B, will be proved for
the larger interval

3,3
Jn = |:—§ /Ln,zﬂvnil

for later purposes.

Lemma 2. Let feC,,. Then
[wB (S )], <cllwfl]- (10)

Proof. Let xeJ, and assume n even (in the case n odd we need only a technical
modification). Then
n/2

WOOBA(SX) = Y Py (X () w()e) =00
j=—n/2

with
Vi = 4j;“n/na Jj= 0,+1,..., in/2

3 S
Let O<x<iﬂhn. (The case x negative is similar.) Then

n/2
w)|Bu(f, )<Y g (x)e200700) = Al |wr|].
j=—n/2

We prove that 4 is bounded. Let us consider the partition

A=Q D+ D Py (x)e2?) 8 =3 43, (11)

l<x  [yl>x

Since X; <1, it is sufficient to estimate X,. Here we may assume that 0 <;j<n/2, since
Pnj2—i(X) <pyja(x) for these values of j (because of the assumption 0<x<34,/2 and
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the evenness of Q). When j = n/2, by Q'(24,) <cQ'(4,) = ¢\/n/ 2, (this follows from
Lemma 1), it is easy to see that

n n
2in X\ " o000 ¢ (2t XN o0
4, Jon

< (1 _ 2}21— X> ec\/ﬁ(2}y,1—x)//1n7 0<x< 31’1/2.
n

In the given interval considered the latter function is monotone increasing and thus
attains its maximum (2)"eV"/2 = o(1) at x =3 /,.
Now let 0<j<n/2. By Stirling formula we deduce

¢ (n/e)"y/n(1 +55)"25(1 = 30"

on NN
(n/f+1)n/2+/ nZ _Jz(n/i ])"/2 j

2¢/, (2/1,1 + x) 4{’7"(2).,,+}'/) (22” _ x) &(2@1 -y
. }’1(4/13! - y/Z) 2;% + Vi 21;1 — )

pn,n/2+j(x> <

2¢hy { { yi—X
ziexp (22 —|—y,)log<1 -
7!(4],3[ _y ) 4)&,, 2/Ln -|—y]
Yi— X )
+(24n yj)log< +2 y)} } 0<x<32,/2. (12)
i

Here we distinguish two cases.
Case 1: x<y;<Jy + x/2(<3/s). Then using the inequality
23

10g(1+u)<u—%+?, u>—1 (13)

to estimate the log terms in (12) we obtain

) Y S expd | 01 = X)L 80— )’
S RO 2 | TaiE =0 T3
iexp H (y/ _ X)Z + 8 2).,12+x 2/1,,27)( (y] _ X)Z
SV T\ 2| 4k -y 340 — (P (402 - 7)
c cn yj —x)? 8(24, + x)
<—= 1 :
fexp{ 3(67 + x)
<ex (24 = %)
S 7S 12 62,, +x)
< expd — 0<X<3//2
\/— 5 AN I .
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On the other hand

0(yj) — 0(X)< (=) () < (yj — x) Q' (22n)

Vn(y; — x)

7 , 0<x<34,/2 (14)

and thus

Z pn,n/2+j (X) eQ(}’l)*Q(x)

X<y <lptx/2

n/2 2 L
Zexp{ an0s %) | e/l x>}
A An

n

© 2 (53]
¢ ettt ¢ > L
Cyelia S et o<
ne

j<2e 22

Case 2: 2y + x/2<y;<(1 — 2)2,. Then estimating only the first logarithm in (12)
by log(1 + u) <u, we get

n . 2 —x
Pnjri(X) <c exp{Mn [_(yj —X) + (24, — y;) log 22: — y]} }7
0<x<34,/2.

2;,,7’6

Here the function ¢(u) = —u+ (24, — u) log57*—=, is monotone decreasing in the

interval [x,24,], whence putting y; = 4, + x/2 we get

Ponss() < coxp G = 5120+ G = x/2) og 2

en(2, — x)]

<e " 0<x<3A,/2.
I

< cexp {—
On the other hand, (14) yields Q(y;) — O(x)<cy/n, and thus

Z Pmn/2+j( )eQJ/ <6’L\/.Z e = . O

Ik /2 <y < (1-2)24,

Lemma 3. We have

B, (s, <e w1l feCo (1)
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and

B, <cllwf"| if f"eC (16)

Proof. By linear transformations (see [3]) we obtain

B”(f’)_( fxz ank )(xx — x)° £ (xx)

4)2 Er Z () (k= X)f (54) =~ By(f 1)

Therefore by Lemma 2 (used for the last term)

w(x)|BL(f,x)| < c||wf|{ Z Pk (X) (xx — x)?e2¥)=0)

nkO

2 ank )|k — x[eQ00) =) 4 — } xeJy.
n k=0 )”n

Then by Cauchy—Schwarz inequality it follows that
w(x)|B,(f,x)]

1/2
C||Wf|| /14 [Z pnk Xk — X Z pnk 2Q Xien)— Q(x)]

n | k=0
12

+F s XGJn.

Z P (X)(xr — x) Zp 1 (x)¢2Q0)-20()

k=0

/13

n

By a linear transformation, it follows from well-known inequalities that

n ) /12 !
Z P (X) (xi — x)2’<c(—”) , xeJy, i=0,1,2,.. (17)
=0 "

(cf. [7, inequality (6) on p. 15]). Hence Lemma 2 used with w? in place of w,

w2 nld, n

(EYA x>||1n<c||wf||<A TR ﬁ«%nwﬂ.

Now we prove (16). (In this part of the proof we have to use the more precise
notation xy , instead of x; see (4).) By [7, 1.4 (2)], we get for f"€C,

2 n-2

w()| By (f,3)[< 73 D 1AL, juf (Vi) IPa-2(x)w(x)

2
A0 k=0

|7 (EDIW(ER)Prni ()l =2

3

=
L8]

N
o
~
\é
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where & € (Xpp, Xi42,). Here, if |&x| <|xkn—2| then O(&) < Q(Xk,—2). Otherwise,
using that 4,/n is a monotone decreasing sequence (see (2)) we get

"

Xkn-2] < |E6| < Max|xps1 4] = 2 k1)~ (n—2)]
i/lnsmdxu(k—l—l) (n —2)| = max|xg+1 42| <|Xkn- 2|+2/1n ;
whence
0(6) < Q0) + Q'34n-2) T2 2 < Qi 2) +
n_2 , NG

Thus using the boundedness of (11) with n — 2 instead of n
n—2
w()|By(f x) <l wf || D puag(x)e@Pn2170 L efhwf™|
k=0

for xeJ,_,. Now this is easily extended to xeJ,, since the % in the definition of J,, can
be replaced by any l<u<2. O

We now complete the proof of boundedness of the operator on the whole real line.

Lemma 4. We have
[IwB, ()| <clwfl|
for all feC,.

Proof. Because of Lemma 2 we may assume e.g. x=>4,. We get by (5)

w(x)| By (f,X)] =w(X)|Bu(fs 2n) + By ([ 2n) (X = 2)]
<c|wfll + (x - zn>eQ“~">*Q<x)w<i )|B,(f s 7))
<l wf ||+ (x = 20)e PO (1) [B)(f )]
< c|wf]| + (x = I )oY \/_/A”W(A,,)|B;(f, )|

A
< ¢||wf] +7%w

Here we use the inequality (2.2.14) from [4], as well as (10) and (15):

wUB( )< [ Y wE) B 6l + f WL )]

< c%nwfn (19)

(2n)| B, (f s 2n)l- (18)
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with  suitable ¢&,,7n,€[l, — %, An] (namely, on this interval evidently
w(&,) ~w(n,) ~w(4,)). Substituting these estimates into (18) we get

WCOIBL(f )| < el | (1 i

i ><c||wf| O

Proof of Theorem 1. By Lemma 4
[w(f = B, (S )< [w(f =9Il + llwlg — B,(9)]]
+ |wB,(f = gll<clw(f =gl +[Iwlg = By(9)ll,  (20)

where ¢g” € C,, will be chosen later.
Let first xeJ,,. Since

! ‘C’
o03) — 90s) = o))~ o (v o)
and B, reproduces linear functions, we can write
g(x) — ank ") (x = xi)”.

Therefore

w(x)|g(x) — Ba(g, X)|< [[wg"]| Z Pk (X) (x = xz ) 226~ 2)

2

Y
< c;"ng”lL xeJ,. (21)

The last inequality can be seen similarly as in the proof of Lemma 3.

Let now, e.g. x>=4,. Let /(x) be that linear function which realizes the first
infimum in (1) with respect to g and for ¢ = 4,,/+/n (which implies #* = 4, by (2)).
Then by (5) and(21) applied to g — 7 in place of g for x = 1,,€J,, we get

w(x)lg(x) = B,(g,x)|
(z
iBl’l ga 11 ln)i

i=

0, _ g5
w(x)|g(x) = £(x)] + w(x) Z IB(gl—'/’?)l

i=0

Do A oo :
<clon(on20) +e g+ Zon B - £ 2|, i (2

(x = )’

For the K-functional

Kolf.8) = inf (Il = glll+ gl (23)
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we have the following equivalence relation:
K (f.2),~of 1), (24)

(cf. Theorem 11.2.3 in [4, p. 182]). Hence if /'€ ACioc, then wa(f, 1), <ct?||wf”]).
Using this with ¢ instead of / we get from (22)

/ln 5 / )‘i !
w(x)[9(x) = B, (9, X[ S T2 w(Z)|B, (9 = £, 2n)| + e lwg"l|, - x>Ane (25)

\/ﬁ
Using the analogue of (19) with ¢ — Z in place of / we get
\/ﬁ ;‘n U
W) By(g = £, 2)| < e | 5= w(&n)[Bulg = £, )l + %W(WH)IB”n(g —,m,)| | (26)

with suitable &,, 1, €[4y, Ay + \‘7] <J,. Here, by (21)

;\12
W(én)|Bn(g -7, én)' < C;n

‘Wg”H + W(én)lg(érz) - /(‘fn”

)2 yl 52
<c—"|wg"||+wz(g,—") < g
n W n

i
and by (16)
W(nn)|B:1/(g - (7 nn)‘ <C||Wg”||.

Substituting these estimates into (26),

An
W(ln)lb“n(g—an)|<0\/ﬁllwg”ll-

This together with (21) yields from (25)

22
A
w(g = B, (g)ll<e*lwg

/l||

Thus (20) gives
2

w(f = B,(f )l <e IIW(f—g)II+%||wg”II :

One can see from the proof of the inequality K»( f, *) <cwa(f, 1), on pp. 191-192 of
[4] (which is part of the equivalence relation (24)) that the function g in (23) can be
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chosen such that ¢” € C,, (and not just g’ e ACjoc). With this choice we obtain

s - B l<ek( 1) <eon(r22) . o @7

4. Proof of Theorem 2

Let x>0 be fixed and define
E —f(x)+/(x)(x=¢
ne) = 2 O I0) +/r=9
(x—9)
Using this function #,., for sufficiently large n we can write

f(x) - B;(fvx)
— ) = Blf) = pas (L) —f ()]
k=0

- *f/éX) i P (%) (x — x1.)? *% i P () (x = ) (), (29)
k=0 k=0

—/"(x). (28)

since B, reproduces linear functions. Here

n

Z Puk(X)(x = xi) . (xi)| < { Z + Z }Pn,k(x)(x — x)? | (k)|
[xe—=x|<0  |xp—x|>0

k=0
=A; + 4. (30)
Evidently lims_, , n,(¢) = 0, i.e. for any >0 there exists a 6 >0 such that
ne(Ol<e if  |x—¢l<o. 31)
Next,
4k —x?

> pus(x)(x = xi)* = (32)
k=0

n

(this comes from a linear transformation of a well-known formula, cf. [7, p. 14]).
From (31) and (32) we deduce

472
A1<e g Pui(x)(x — x)? ST”S. (33)
k

On the other hand

(x| < If(xg\ tebal et wa”exl(;zQ(xk) + cin<@egm)
< VI Jevjoe) < VA sy,

5 5
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for |x — xx|> 9 and for sufficiently large n’s, where ¢(x) depends only on x. Now it
follows from the proof of Lemma 2 that

n c(x)n cn ) Cn/n
?A2<—/1i52 Z exp{—Tﬁ(x—xk) —|—} |x—xk}

n [x—xp| >4 o

2 2
< c(?n exp{ C/{f 5 +C2l\/ﬁ5}<c()(;2n exp{ C? 52}

n

for sufficiently large ns. Condition (b) in the definition of the Freud weights implies

1
that Q'(x) > cx’~¢ for large x and for any ¢>0, whence by (2) 4, <cn2(1+7-¢), Thus we
obtain

v—¢

n c(x)n? cynl+r—e
— A< (52 exp 152 -0 as n—- 0. (34)
Thus by (30)-(34)
2 11
1) = B0+ 20| <ot 5y L
n ‘n /“n

Hence the theorem follows. [

5. Proof of Theorem 3

If wa(f, 1), <ct*, 0<a<?2, then by Theorem 1 we have

w(f — BI(S >>||<c(j’i) (35)

n

Now we prove the converse implication. Assuming (35), by Lemma 3 we obtain
V(n) =Ko (f,n72), <c{lwlf = Byl +n72llwBy ()1}
<e{ () +ullws; (7 - 0l + w8 I

< { (Z2) el =+ 22 o }
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Thus with a proper choice of ¢’ € ACqc,

=el () o (15) )
| ()

2
< c{w/znr“ v (M) sv([\/ﬁ/zn])}.

n

Hence by the Berens—Lorentz lemma [4, Lemma 9.3.4, p. 122]* we get
or(fon ), <cKy(f,n?), = P(n)<cn ™.

This is equivalent to w,(f,?),<c*. O

6. Proof of Theorem 4

If f is a linear function, by Theorem 1 we get B}(f ) =/f. Now we prove the
converse implication.

Let [a, b] be an arbitrary but fixed interval (since # is large enough, we can always
assume [a, b| =[—4,, 44]). Then following [3, 5.3, p. 124] we introduce the function

F =) L0 () fa),
Note that F(a) = F(b) = 0.

We want to prove that F =0 on [q,b], i.e., f is a linear function. To this aim
suppose that there exists a € (a, b), such that F(&)>0. We will show that this leads
to a contradiction, that is F' must be identically 0.

We apply a slight modification of the parabola technique. By [3, Lemma 5.1, p.
124] there exists an y€(a,b) and

P(x) = a(x =)’ + B(x —n) + F(n),

such that <0 and P(x)>F(x), x€la,b]. Note that P(n) = F(n). Let 6 = min(y —
a,b —n)>0. Then

n

By(F,n) — By(P,n) =By(F — P,n) = Z [F(xk) — P(xk)lpn,k(n)
k=0

=33+ 3 PIFG) — P lpac(n)
[xe—n| <0 |xk—n|>d

=S+ 9. (36)

2Note that at the quoted place this lemma is erroneously stated: An~* in the condition should be Ak~*.
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Evidently S| <0, and thus
Bn(Fvn) - B,,(P,l’[) < Z [|F(xk)| + |P(xk)|]pn,k(77)'

Xk —n| >0
From the definition of F, for |5 — x| >0 we get
F < G] + el + A< ]2 4 e <3,
Moreover from the definition of P
|[P(xp)| < cxi < c}vi < ecIn=xelVn/i,
Hence and by (37)—(39)
By(F,n) = Bu(P,n)< Y pux(n)en—sViln

[xg—n|>0

and following the proof of Lemma 2 we get

n n n
Bn(Fvn) - Bn(Pvi/’) <nexp (clé\/{_; - 62?52> <eXp (—(,’352 _2> !

n n

Therefore

72

n

B”(F7n)< Bn(PJI) + exp <_C352 l)

=oB,((x — 11)2, n) + F(n) + exp (—C352%> .

n

Consequently from the definition of f, for n sufficiently large

B.(fsn) =S (n) =Bu(f,n) =S (n) = Bu(F,n) = F(n)

n
< oBy((x —n)*,n) +exp (—6352 72>
A

2 2 22
:oc—"—cxn +exp<—0352£2><—/1i7 A>0,
n A n

n
n

a contradiction because we assumed
12
(s = B =o(2)

Similar reasoning leads to a contradiction if F(¢)<0. O

7. Proof of Theorem 5

237

(40)

If wy(f,t),<ct?, then by Theorem 1 we get ||w[f— Bi(f)]||<ci/n.
Now we prove the converse implication. Let 0<f<1 be an arbitrary number.
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We prove that
max w(x)\Aif(x)\ <2cet2, |x+h|<h", (41)

0<h<t

where ¢ is the same constant as in the statement of Theorem 5. This will show that
the “main part modulus™ in (1) satisfies the requirement.

Suppose that (41) does not hold. We will show that this leads to a contradiction.
Indeed, then there exists an x>0 and ¢, &y such that

w(xo)AﬁOf(xo) < —2cet, |xo+ho|<hy, 0<hy<ty,
say. Consider
ce
Plx) = ——
() w(xp)

where / is the linear function interpolating /" at xo + /g, and d is chosen large enough
such that P(x)>=f(x) on [xo — ho, Xo + /o). Then (see [2, pp. 138-139])

m = 1inf{P(x) — f(x) : xo — ho<x<x0 + Mo}

(x = x0)* + £(x) + d,

is attained at a point ye(xo — ho, xo + ho). Let P*(x) = P(x) — m, then
P (x)=f(x), x€[xo— ho,xo+ho] and P*(y) =f(p).

Let
ad = max{x:x<x)—hy, P'(x)=f(x)},
b =min{x: x>x¢ + hy, P*(x)=f(x)}.

Then ¢’ <y<b' and P*(x)=f(x) on [d,}].

Let
0 ' b
Fo={° xeld. )
J(x) =P (x), x¢ld,b],
so that f(x)< P*(x) + F(x), VxeR. Following the proof of Theorem 4 we have
n
|B,(F,y)|<exp (—q?).

n

Thus
Bu(f,») =S ()< Bu(P*+ F,y) — P'(y) = Bu(P",y) — P*(y) + Bu(F, )

Bu((x—»)0) + p<—p>

w(xo) ;

2 2
_ ce(42;, —y) +exp 761% < 3cel,
w(xo)n A no(xg)

for sufficiently large n. On the other hand
e

B,(f,y) =)= - ()
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30 <0 _ 00)-00x0) < Gl i) < 0@ ) _
w(y)
which is a contradiction.
Next we show that the “tail parts” in (1) are also <ct>. For a fixed 7> 0 define n by
In <t*<Any1. Then
1 1 j~n+1 >, ln

) O Um) a1 v

Since for x> 4,, Bi(f,x) is a linear function, we obtain
nf (w(/ =l ooy <IwCf = B, ()]
/eP

[tr,00)
22
)<c—”<ct2.
n

<|w(f = B,(f))l

(The case x< — 4, is analogous.) This shows that the “tail-part” of w, satisfies the
stated estimate. [

[An, 0
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